RESEARCH ARTICLE

Volume 3,Issue 1

Fall 2023

Cite this article
3
Download
3
Citations
198
Views
12 December 2018

Weibel instability in Weakly Relativistic Laser Fusion Plasma

Slimen. Belghit1* Beddiaf. Zaidi1 Oussama. Boultif1 Abdelaziz. Sid1
Show Less
1 PRIMALAB Laboratory, Department of Physics, Faculty of Material Sciences, University of Batna1, Batna, 05000DZ, Algeria
Submitted: 8 December 2018 | Accepted: 8 December 2018
© 2023 by the Author(s). Licensee Whioce Publishing, USA. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

In this work, the Weibel instability due to inverse bremsstrahlung (IB) absorption in laser fusion plasma has been investigated. The stabilization effect due to the coupling of the self- generated magnetic field by Weibel instability with the laser wave field is explicitly showed. In this study, the relativistic effects are taken into account; here the basic equation is the relativistic Fokker-Planck equation. The main obtained result is that the coupling of self- generated magnetic field with the laser wave causes a stabilizing effect of excited Weibel modes. We found a decrease in the spectral range of Weibel unstable modes. This decreasing is accompanied by a reduction of two orders in the growth rate spectrum of instability, or even stabilization of these modes. It has been shown that the previous analysis of the Weibel instability due to IB have overestimated the values of the generated magnetic fields.

Keywords
relativistic Weibel instability
laser fusion plasma
static magnetic field
stabilization
Relativistic laser plasma interaction
References

1. E. S. Weibel, Phys. Rev. Lett. 2, 83 (1959).
2. K. Bendib, A. Bendib and A. Sid, Laser and Particle Beams 16, 3 (1998).
3. L. Bhatanagar, E.P. Gross, M. Krook, phys, rev, 94, 511(1954)
4. Slimen Belghit and Abdelaziz Sid, PHYSICS OF PLASMAS 23, 063104 (2016)
5. I. P. Shkarofsky, T.W. Johnston and M.P. Bachynski, The particule Kinetic of Plasmas, (Addison-Wesley) 1966.
6. M. Abramowitz and I. Stegun, Handbook of Mathematical Functions, (Dover, New York 1970).
7. T. M. Macrobert. Spherical harmonics an elementary treatise on harmonic functions with applications second edition, revised. 1947.
8. A. B. Langdon, Phys. Rev. Lett. 44, 575 (1980).
9. A. Bendib, K. Bendib and A. Sid, Phys. Rev. E55, 7522 (1997).
10. A. Bendib and J. F. Luciani, Phys. Fluids 30, 1353 (1987).
11. A. Sid, S. Belghit and A. Ghezal, 25th IAEA Fusion Energy Conference IAEA CN-221-IFE/P6-8, 2014.
12. Wright, T. P. & Hadley, G. R. (1975). Phys. Rev. A 12, no. 2, p. 686-697.
13. D. Pesme, La fusion thermonucléaire contrôlée par laser, Ed. R. Dautrey et J. P. Watteau (Eyrolles, Paris 1993).
14. J. D. Lindl, R. L. McCroy and E. M. Campbell, Progress towards and burn propagation in inertiel confinement fusion, Phys. Today, 34, (1992).
15. P. Alaterre, J. P. Matte and M. Lamoureux, Phys. Rev. A 34, 1578 (1986).
16. J. P. Matte and all, Plasma Phys. Controlled Fusion 30, 1665 (1988).
17. A. Sid, Physics of Plasmas, 1, 214 (2003).

Conflict of interest
The authors declare they have no competing interests.
Share
Back to top