ARTICLE

Volume 10,Issue 3

Cite this article
9
Citations
48
Views
26 September 2025

Synergistic Antitumor Effects and Pharmacological Interactions of Immune Checkpoint Inhibitors Combined with Chemotherapeutic Agents: Mechanisms and Clinical Translation

Keyi Yuan1* Dingru Hong2 Siyu Zhao3 Shiyu Liu1 Siqi Song1
Show Less
1 China Pharmaceutical University, School of Chinese Medicine, Nanjing 211198, Jiangsu, China
2 China Pharmaceutical University, School of Clinical Pharmacy, Nanjing 211198, Jiangsu, China
3 China Pharmaceutical University, School of life science and technology, Nanjing 211198, Jiangsu, China
JMDS 2025 , 10(3), 63–70; https://doi.org/10.18063/JMDS.v10i3.655
© 2025 by the Author. Licensee Whioce Publishing, Singapore. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution -Noncommercial 4.0 International License (CC BY-NC 4.0) ( https://creativecommons.org/licenses/by-nc/4.0/ )
Abstract

This paper provides a comprehensive literature review of the combination of immune checkpoint inhibitors (ICIs) and chemotherapy drugs in the field of synergistic antitumor therapy, aiming to summarize and analyze the current status, key issues, and future trends of tumor chemotherapy combined with immunotherapy. Research indicates that chemotherapy drugs enhance the immune system's ability to recognize and kill tumors by inducing immunogenic cell death (ICD) and altering the tumor microenvironment (TME). This paper provides a detailed analysis of drug metabolism enzymes and transporters, time-dependent interactions, dual pathways for immune system activation, intrinsic sensitization of tumor cells, the microbiome-immunotherapy axis, mechanisms of resistance and reversal strategies, as well as breakthroughs in novel delivery systems. Finally, this paper discusses improvements and prospects for future immunotherapy-chemotherapy combination studies. Personalized dosing and toxicity management remain major challenges, and future efforts should focus on optimizing treatment regimens using multi-omics data and organoid/PDX models.

Keywords
Immune checkpoint inhibitors
immunochemotherapy
synergistic antitumor effects
tumor microenvironment
novel delivery systems
References

[1] Garassino M C, Gadgeel S, Speranza G, 2023, Pembrolizumab Plus Pemetrexed and Platinum in Nonsquamous Non-Small-Cell Lung Cancer: 5-Year Outcomes From the Phase 3 KEYNOTE-189 Study. J Clin Oncol. 41(11):1992-1998. doi: 10.1200/JCO.22.01989.

[2] Nogami N, Barlesi F, Socinski M A, 2022, IMpower150 Final Exploratory Analyses for Atezolizumab Plus Bevacizumab and Chemotherapy in Key NSCLC Patient Subgroups With EGFR Mutations or Metastases in the Liver or Brain. J Thorac Oncol. 17(2):309-323. doi: 10.1016/j.jtho.2021.09.014.

[3] Liu J, 2012, Cytochrome P450 activity and cancer treatment. Drug Evaluation, 9(05): 14-18.

[4] Huo Y, Wang D, Yang S, 2024, Optimal timing of anti-PD-1 antibody combined with chemotherapy administration in patients with NSCLC. J Immunother Cancer. Dec 19; 12(12):e009627. doi: 10.1136/jitc-2024-009627.

[5] Obeid M, Tesniere A, Ghiringhelli F, 2007, Calreticulin exposure dictates the immunogenicity of cancer cell death. Nat Med. 13(1):54-61. doi: 10.1038/nm1523. Epub 2006 Dec 24.

[6] Tournant F, 2023, Stromal cells drive tumorigenesis in BRCA1 mutation carriers. Nat Rev Cancer. 23(6):349. doi: 10.1038/s41568-023-00580-8.

[7] Li Z, Lai X, Fu S, 2022, Immunogenic Cell Death Activates the Tumor Immune Microenvironment to Boost the Immunotherapy Efficiency. Adv Sci (Weinh). 9(22):e2201734. doi: 10.1002/advs.202201734.

[8] Zhou X, Hou W, Gao L, 2020, Synergies of Antiangiogenic Therapy and Immune Checkpoint Blockade in Renal Cell Carcinoma: From Theoretical Background to Clinical Reality. Front Oncol.  10: 1321. doi: 10.3389/fonc.2020.01321.

[9] Ahmed A, Tait S W G, 2020, Targeting immunogenic cell death in cancer. Mol Oncol.  14(12):2994-3006. doi: 10.1002/1878-0261.12851.

[10]Łuksza M, Sethna Z M, Rojas L A, 2022, Neoantigen quality predicts immunoediting in survivors of pancreatic cancer. Nature. 2022 Jun;606(7913):389-395. doi: 10.1038/s41586-022-04735-9.

[11]Mehdipour P, Marhon S A, Ettayebi I, 2020, Epigenetic therapy induces transcription of inverted SINEs and ADAR1 dependency. Nature. 588(7836):169-173. doi: 10.1038/s41586-020-2844-1.

[12] Yang Z, Ma J, Han J, 2024, Gut microbiome model predicts response to neoadjuvant immunotherapy plus chemoradiotherapy in rectal cancer. Med. 5(10):1293-1306.e4. doi: 10.1016/j.medj.2024.07.002.

[13] Ding W, Mo J, Su Y, 2025, Metabolic reprogramming of tumor-associated macrophages via adenosine-A2AR signaling drives cross-resistance in non-small cell lung cancer. Drug Resist Update.  82:101272. doi: 10.1016/j.drup.2025.101272.

[14] Xie J, Liu M, Deng X, 2024, Gut microbiota reshapes cancer immunotherapy efficacy: Mechanisms and therapeutic strategies. Imeta. 3(1):e156. doi: 10.1002/imt2.156.

[15] Gao J, Gu X, Pang M, 2024, RHC-SNAPSHOT investigators. Risk factors for anastomotic leak and postoperative morbidity after right hemicolectomy for colon cancer: results from a prospective, multi-centre, snapshot study in China. Br J Surg. 111(1):znad316. doi: 10.1093/bjs/znad316.

[16]Wang T T, Zeng H H, Hu T, 2024, Predictive value of pan-immunological inflammation scores for primary resistance to immunotherapy combined with chemotherapy in HER-2-negative advanced gastric cancer. Journal of Jinzhou Medical University, 45(06): 31-36. DOI: 10.13847/j.cnki.lnmu.2024.06.002.

[17] Wu Q, Yang Z, Nie Y, 2014, Multi-drug resistance in cancer chemotherapeutics: mechanisms and lab approaches. Cancer Lett. 347(2):159-66. doi: 10.1016/j.canlet.2014.03.013.

[18] Fan D, Cao Y, Cao M, 2023, Nanomedicine in cancer therapy. Signal Transduct Target Ther. 8(1):293. doi: 10.1038/s41392-023-01536-y.

[19] Ezike T C, Okpala U S, Onoja U L, 2023, Advances in drug delivery systems, challenges and future directions. Heliyon. 9(6):e17488. doi: 10.1016/j.heliyon.2023.e17488.

[20]Wang X Y, Fu S J, Meng X J, 2024, Research Progress on New Methods and Technologies for Analyzing the In Vivo Fate of Nanodrug Delivery Systems. Progress in Pharmacy, 48(10): 747-760. DOI: 10.20053/j.issn1001-5094.2024.10.004.

[21] Zhang L, Wang Y, Karges J, 2023, Tetrahedral DNA Nanostructure with Interferon Stimulatory DNA Delivers Highly Potent Toxins and Activates the cGAS-STING Pathway for Robust Chemotherapy and Immunotherapy. Adv Mater. 35(8):e2210267. doi: 10.1002/adma.202210267.

[22] Yang Z, Gao D, Zhao J, 2023, Thermal immuno-nanomedicine in cancer. Nat Rev Clin Oncol. 20(2):116-134. doi: 10.1038/s41571-022-00717-y.

[23]Liu Y, Xie Y, Chen Y, 2025, A protease-cleavable liposome for co-delivery of anti-PD-L1 and doxorubicin for colon cancer therapy in mice. Nat Commun. 16(1): 2854. doi: 10.1038/s41467-025-57965-6.

[24] Fan D, Cao Y, Cao M, 2023, Nanomedicine in cancer therapy. Signal Transduct Target Ther. 8(1):293. doi: 10.1038/s41392-023-01536-y.

[25] Yu W D, Sun G, Li J, 2019, Mechanisms and therapeutic potentials of cancer immunotherapy in combination with radiotherapy and/or chemotherapy. Cancer Lett. 452: 66-70. doi: 10.1016/j.canlet.2019.02.048.

[26] Pointer K B, Pitroda S P, Weichselbaum R R, 2022, Radiotherapy and immunotherapy: open questions and future strategies. Trends Cancer. 8(1):9-20. doi: 10.1016/j.trecan.2021.10.003.

Share
Back to top